F 1094-048100 (S 481) B2 OMFORMARE RA 105

Omformare

till Ra 105

Beskrivning del 11
Detaljlista

Kungl Armétygförvaltningen 1962

Omformare

till Ra 105

Tc 94026

Beskrivning del 11
Detaljlista

Kungl Armétygförvaltningen 1962

Beställs från FBF, Bokdetaljen, Fack, 172 20 Sundbyberg 1

Innehåll

Allmänt	3
Data	4
Konstruktion	5
Funktion	6
Serieregulator	6
Omformardel	7
Funktionskontroll	9
Enklare felsökning	10
Utebliven sekundärspänning	10
Felaktiga sekundärspänningar	10
För hög ström	11
Detaljlista	13
Kretsschema	15

Allmänt

Omformaren Tc 94026 till Ra 105 ersätter torrbatteriet då radiostationen är monterad i fordon. Den kan användas såväl till 12 V-system som till 24 V-system. Omformaren ansluts till sändtagaren med snäpplås på samma sätt som batterilådan.

Bild 1. Omformare

Omformaren är konstruerad så att några skador inte skall uppstå om det blir kortslutning eller om spänningskällan inkopplas med felaktig polaritet. Den är dessutom radioavstörd för frekvenser över 150 kHz. Omformaren tål att köras i tomgång under längre tid.

Anvisningar för omformarens handhavande har inte tagits med i denna beskrivning. Dessa ingår nämligen i de beskrivningar som utarbetats över de fordon där Ra 105 ingår.

Data

Nedan angivna data gäller vid temperaturer mellan -25 och +50 °C.

Primärspänning

11-15 V=, nominellt 13,5 V=

alternativt

22-30 V=, nominellt 27,0 V=

Sekundärspänning och belastning

Nominell spänning	Tillåten spän- ningsvariation	Nominell belastning	Belastnings- område
1,3 V	±5 %	530 mA	430-550 mA
5,4 V	+ 5 %	350 mA	0-350 mA
65 V	+ 8 %	29 mA	22,5-31,5 mA
130, V	- 8 %	61 mA	55-68 mA

Arbetstemperatur

mellan -40 och +50°C ·

Mått och vikt

längd 220 mm

bredd 105 mm

höjd 65 mm

vikt 1,6 kg

Konstruktion

Omformaren är uppbyggd på en stomme, som är fäst i en yttre låda med elva skruvar.

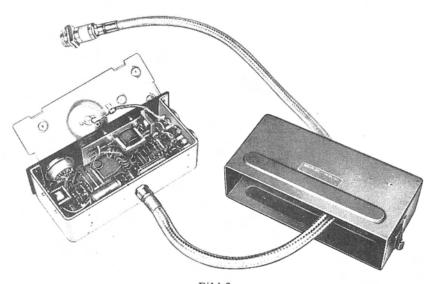


Bild 2. Omformaren urtagen ur lådan

Stommen utgörs av en U-formad aluminiumplåt. De flestakomponenterna sitter på en plint, utförd av glasfiberarmerat laminat och försedd med tryckta kretsar.

 ${\tt På}$ stommens undersida förs matarkabeln in genom en kabelgenomföring med dragavlastning.

Omformaren har efter monteringen behandlats med fuktskyddslack. Dräneringshål finns i lådans botten.

Funktion

Omformaren består av två huvuddelar, nämligen en serieregulator för spänningen och en självsvängande omformardel.

Serieregulatorn matar omformardelen.

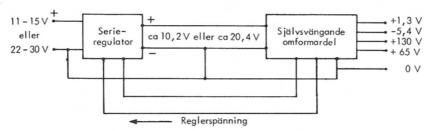


Bild 3. Blockschema över omformaren

Serieregulator

Serieregulatorn innehåller en krafttransistor V1, som styrs av en annan transistor V2. Styrströmmen för V2 tas från en brygga innehållande en zenerdiod V13 (bild 4).

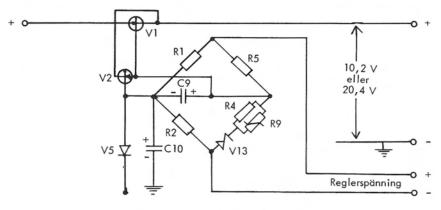
Bryggan matas med en likspänning (reglerspänning) på ca 11 V, som erhålls från en särskild lindning på omformartransformatorn. Genom variationer i reglerspänningen åstadkommer bryggan en styrström till serietransformatorn V2, som har till uppgift att hålla spänningen konstant i transformatorns lindningar. Bryggan har en termistor R9, som utjämnar de temperaturväxlingar som uppstår i halvledarkomponenterna.

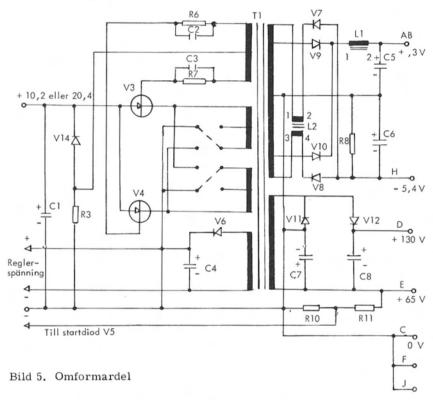
Omformardelens arbetsspänning skall vara ca 10,2 V. Spänningen korrigeras genom att man byter ut motståndet R1. När man erhållit rätt värde på arbetsspänningen skall man kontrollera sekundärspänningen 1,3 V. Även denna spänning korrigeras genom att man byter ut motståndet R1.

Den senare korrigeringen kräver inte så stora ändringar i resistansen varför den endast obetydligt påverkar värdet på arbetsspänningen.

Spänningsfallet över serietransistorn är i allmänhet lågt. Vid maximal primärspänning blir spänningsfallet störst, dvs ca 4,8 V vid 15 V, och ca 9,6 V vid 30 V. Effektförlusten blir därför i genomsnitt låg i serietransistorn eller ca 5 W.

Kondensatorerna C9 och C10 gör att basimpedansen hos reglerspänningens växelströmskomponent blir låg. Härigenom får serieregulatorn från omformarsidan sett strömgeneratorkaraktär, varför tilledningens växelströmskomponent kan försummas.




Bild 4. Brygga med reglerkrets

Dioden V5, som är ansluten mellan basen på styrtransistorn V2 och spänningsdelaren R10 - R11 i omformardelen, har till uppgift att förse styrtransistorn med startström. Då omformardelen kommit igång bildas en positiv spänning över spänningsdelaren R10 - R11, så att dioden V5 spärras. Detta sätt att leverera startström säkerställer starten även om matningsspänningen inkopplas successivt från 0.

Omformardel

Omformardelen (bild 5) innehåller en ferrittransformator med dubbel primärlindning. I 12 V-system kopplas lindningarna parallellt och i 24 V-system i serie.

Strömmen i primärlindningen växlas mellan de båda transistorerna V3 och V4. Transistorerna styrs av en styrlindning. Strömmen till denna stabiliseras med hjälp av seriemotstånden R6 och R7, som är överbryggade med kondensatorerna C2 och C3, för att växlingen skall ske snabbt. Styrströmkretsen sluter sig över dioden V14, som ger en obetydlig ökning av kretsens resistans. Växlingstiden blir med denna koppling högst 2 μ s. För att starten skall gå lättare får transistorerna V3 och V4 en viss förström genom motståndet R3.

Varvtalet på transformatorns primärlindning har valts så att frekvensen blir ca 7000 Hz. Övriga lindningar har varvtal som motsvarar de spänningar de skall leverera. Kurvformen hos växelspänningen på transformatorn är nästan rektangulär. För 65 V- och 130 V-utgångarna finns glättningsfilter, bestående av enbart kondensatorer. Även spänningarna 1,3 V och 5,4 V är försedda med filter, men dessa innehåller även stoppspolar. Stoppspolen för spänningen 5,4 V har två samverkande lindningar, en för vardera dioden. Läckinduktansen mellan lindningarna dämpar i viss mån den kortslutningsström som uppträder vid övergången mellan halvperioderna och som orsakas av diodernas efterledning.

Förlusterna i transistorerna V3 och V4 är proportionella mot bottenspänningen, växlingstiden, frekvensen och läckströminen mellan kollektor och emitter. Frekvensen måste vara relativt hög med hänsyn till transformatorns dimensioner och filtreringen av likspänningarna. Transistorernas styrning är utformad så, att växlingstiden, som förut nämnts, är högst 2 μs och bottenspänningen i medeltal lägre än 400 mV. Sammanlagda förlusteffekten i transistorerna blir mindre än 1,5 W per transistor vid normal drift.

Förlusterna i ferrittransformatorn är i huvudsak resistiva, och följaktligen små.

Om omformarens spänningskälla ansluts med felaktig polaritet händer ingenting eftersom serietransistorn i regulatordelen spärrar strömmen. Råkar man kortsluta sekundärspänningarna 130 V, 65 V eller 5,4 V slutar omformardelen att svänga. Härvid förbrukas endast den ström som utgörs av läckströmmar genom transistorerna V3 och V4. Om 1,3 V-kretsen kortsluts svänger omformaren ändå, men 1,3 V-kretsen utsätts för onormalt hög belastning. Komponenterna är emellertid så dimensionerade att de tål denna belastning vid för övrigt normala förhållanden.

Funktionskontroll

Kör omformaren såväl i tomgång som med full belastning vid primärspänningarna 11-15 V och 22-30 V och utför åtgärderna enligt punkt 1 och 2 nedan.

1. Kontrollera att primärströmmen vid ca $+20^{\circ}\text{C}$ har ungefär följande värden:

Primärspänning	Mottagning	Sändning
12 V	0,7 A	1,7 A
24 V	0,4 A	1,0 A

Vid ökad omgivningstemperatur stiger strömförbrukningen beroende på ökade transistorförluster.

2. Undersök de elektriska störningarna genom att köra omformaren kopplad till Ra 105. För in en omodulerad signal på mottagarens antenn från en signalgenerator, och lyssna samtidigt i stationens mottagare. Då blockeringsoscillatorn är tillslagen (minsta möjliga) fåringa störstörningar från omformaren uppfattas, vid en signal på mottagarens antenn av 1 μ V.

Enklare felsökning

Utebliven sekundärspänning

Om samtliga sekundärspänningar uteblir tyder detta på att omformaren inte svänger. Detta märker man också på att omformartonen inte hörs.

Startar inte omformaren utan belastning kan detta ha följande orsaker:

- 1. Kortslutning i någon av filterkondensatorerna C5, C6 eller C8.
- 2. Avbrott i motståndet R3.
- 3. Fel i transistorerna V3 och V4.
- 4. Fel i transistorerna V1 och V2.

Om en av sekundärspänningarna uteblir bör likriktardioderna i den aktuella kretsen undersökas.

Felaktiga sekundärspänningar

På grund av omformarens konstruktion kommer sekundärspänningarnas storlek att stå i bestämd relation till varandra. Om värdet är för högt på en spänning förekommer motsvarande fel på de övriga.

Vid fel i sekundärspänningarna, kontrolleras kollektorspänningen på transistorn V1 i förhållande till jord (CFJ i hylstaget). Med primärspänningen 11-15 V skall kollektorspänningen normalt vara ca 10,2 V och med primärspänningen 22-30 V ca 20,4 V.

Är kollektorspänningen rätt enligt ovan kan felet ligga i transformatorkärnan eller bero på osymmetri hos oscillatorn. Ett sådant oscillatorfel beror vanligen på fel i kondensatorerna C2 och C3 eller också på stor olikhet i strömförstärkningen mellan transistorerna V3 och V4.

Avviker kollektorspänningen från ovannämnda värden bör man söka felet i kontrollspänningskretsen. Härvid kontrolleras spänningen över kondensatorn C4, vilken normalt är ca 11,0 V. Avviker denna spänning

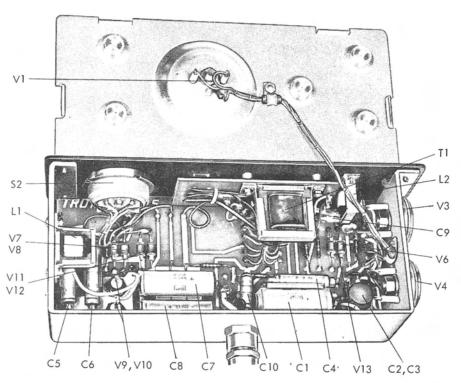
procentuellt lika mycket som sekundärspänningen måste felet ligga i bryggan, varför ingående element i denna bör kontrolleras. Skulle den aktuella avvikelsen i sekundärspänningen bero på resistansförändringar hos R2, R4 och R5 kan motståndet R1 bytas ut så att resistansen i bryggan får rätt värde. Spänningen över zenerdioden V13 skall normalt vara 9 V $^+$ 10 %. Termistorn i samma gren som zenerdioden skall ha ca 50 ohm resistans (vid +20 $^{\circ}$ C). Avviker dessa värden för mycket bör komponenterna bytas ut.

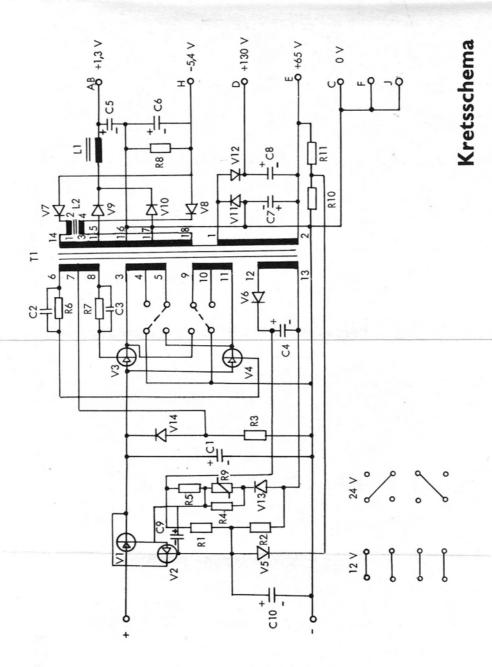
För hög ström

Skulle matningsströmmen ha onormalt högt värde, kan detta ha följande orsaker:

- 1. Stor läckning i kondensatorn C1.
- 2. Stora läckströmmar i transistorerna V3 och V4.
- 3. Läckning i någon av kondensatorerna C4, C5, C6, C7 eller C8.

Om strömmen till oscillatorn har ökat pg a ökad frekvens får man ökade förluster i transistorerna V3 och V4. Frekvensökningen kan bero på att ferritkärnan rubbats så att transformatorns tvärinduktans minskat. Luftgapet till kärnan bör härvid justeras.




Bild 6. Detaljernas placering

Detaljlista

Bokstaven B i kolumnen Erh enl betyder att delen skall beställas från centralförråd enligt gällande rutiner.

Rad	Detaljnr	Materielnr	Benämning	An- tal	Erh enl	Tekniska uppgifter mm
1	R1	M2400-045181	Motstånd	1	В	Skikt 180 ohm +5% 0,25 W
2	R2	M2400-045102	Motstånd	1	В	Skikt 1 kohm +5% 0,25 W
3	R3	M2400-045222	Motstånd	1	В	Skikt 2,2 kohm +5% 0,25 V
4	R4	M2400-045181	Motstånd	1	В	Skikt 180 ohm +5% 0,25 W
5	R5	M2400-045181	Motstånd	1	В	Skikt 180 ohm +5% 0,25 W
6	R6	M2400-045220	Motstånd	1	В	Skikt 22 ohm +5% 0,25 W
7	R7	M2400-045220	Motstånd	1	В	Skikt 22 ohm +5% 0,25 W
8	R8	M2400-045151	Motstånd	1	В	Skikt 150 ohm +5% 0,25 W
9	R9	Tc 05150	Motstånd	1	В	Termistor 50 ohm
10	R10	M2400-045682	Motstånd	1	В	Skikt 6,8 kohm +5% 0,25 V
11	R11	M2400-045472	Motstånd	1	В	Skikt 4,7 kohm +5% 0,25 V
12	C1	Tc 04537	Kondensator	1	В	500 μ F +20% ellyt
13	C2	Tc 04533	Kondensator	1	В	1 μ F +10% 3 V keramisk
14	C3	Tc 04533	Kondensator	1	В	1 $\mu\mathrm{F}$ ⁺ -10% 3 V keramisk
15	C4	Tc 04534	Kondensator	1	В	100 $\mu\mathrm{F}$ 12 V $^{+}\!20\%$ ellyt
16	C5	Tc 04536	Kondensator	1	В	400 μ F 6 V $^+$ 20% ellyt
17	C6	Tc 04536	Kondensator	1	В	400 μ F 6 V $^+$ 20% ellyt
18	C7	Tc 04535	Kondensator	1	В	100 μ F 70 V $^+$ 20% ellyt
19	C8	Tc 04535	Kondensator	1	В	100 μ F 70 V $^+$ 20% ellyt
20	C9	Tc 04543	Kondensator	1	В	30 $\mu\mathrm{F}$ 3 V +50 -20 % ellyt
21	C10	Tc 04544	Kondensator	1	В	10 μ F 30 V +50 -20 % ell
22	V1	M2461-8001	Transistor	1	В	Motorola typ 2N 441
23	V2	M2461-7515	Transistor	1	В	Philips typ OC74
24	V3,V4	M2461-8016	Transistor	(2)	В	Motorola 2x2 N441
25	V5	M2460-5092	Diod	1	В	ECO typ 0300
26	V6	M2460-5092	Diod	1	В	ECO typ 0300

Rad	Detaljnr	Materielnr	Benämning	An- tal	Erh enl	Tekniska uppgifter mm
1	V7	M2460-5092	Diod	1	В	ECO typ 0300
2	V8	M2460-5092	Diod	1	В	ECO typ 0300
3	V9	M2460-5091	Diod	1	В	ECO typ 0200
4	V10	M2460-5091	Diod	1	В	ECO typ 0200
5	V11	M2460-5093	Diod	1	В	ECO typ 0302
6	V12	M2460-5093	Diod	1	В	ECO typ 0302
7	V13	M2461-4023	Diod	1	В	ECO Zener typ 1309
8	V14	M2460-5092	Diod	1	В	ECO typ 0300
9	Т1	Tc 10429	Transformator	1	В	Med kopplingsplint
10	L1	Тс 11313	Stoppspole	1	В	
11	L2	Tc 11323	Stoppspole	1	В	
12	S1	M1830-201333	Stiftpropp 4-pol	1	В	
13	S2	Tc 18712	Hylstag 8-pol	1	В	

